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Abstract

We consider the use of preconditioning methods to accelerate the convergence

to a steady state for both the incompressible and compressible fluid dynamic equa-

tions. Most of the analysis relies on the inviscid equations though some applications

for viscous flow are considered. The preconditioning can consist of either a matrix

or a. differential operator acting on the time derivatives. Hence, in the steady state

the original steady solution is obtained. For finite difference methods the precondi-

tioning can change and improve the steady state solutions. Several preconditioners

previously discussed are reviewed and some new approaches are presented. /
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1 Introduction

Over the past years numerous researchers have tried to solve the steady state incompress-

ible equations for both inviscid and viscous flows. This also lead to attempts to solve the

compressible equations over a large range of mach numbers. A standard way of solving

the steady state equations is to march the time dependent equations until a steady state

is reached. Since the transient is not of any interest one can use acceleration techniques

which destroy the time accuracy but enable one to reach the steady state faster. For the

incompresible equations the continuity equation does not contain any time derivatives.

To overcome this difficulty Chorin [14] added an artificial time derivative of the pressure

to the continuity equation together with a multiplicative variable, fl . With this artifi-

cial term the resultant scheme is a symmetric hyperbolic system for the inviscid terms.

Thus, the system is well posed and and numerical method for hyperbolic systems can

be used to advance this system in time.. The free parameter fi is then chosen to reach

the steady state quickly. Later Turkel [54] extended this concept by adding the pressure

time derivative to the momentum equations and introducing a second free parameter c_.

This system can then be analyzed for optimal c_, ft. The resulting system after precon-

ditioning is no longer symmetric but can be symmetrized by a change of variables. This

will be shown in more detail later.

It is well known that it is difficult to solve the compressible equations for low Mach

numbers. For an explicit scheme this is easily seen by looking at the time steps. For

stability the time step must be chosen inversely proportional to the largest eigenvalue of

the system which is approximately the speed of sound, c, for slow flows. However, other

waves are convected at the fluid speed, u , which is much slower. Hence, these waves

don't change very much over a time step. Thus, thousands of time steps are required

to reach a steady state. Should one try a multigrid acceleration one finds that the same

disparity in wave speeds slows down the multigrid acceleration. With an implicit lnethod

an ADI factorization is usually used so that one can easily invert the implicit factors.

The use of ADI introduces factorization errors which again slows down the convergence

rate when there are wave speeds of very different magnitudes [49] .

For small Mach numbers it can be shown ([281, [31] ) that the incompressible equations

approximate the compressible equations. Hence, one needs to justify the use of the

compressible equations for low Mach flows. We present several reasons one would still

use the compressible equations even though the Mach number of the flow is small.

• There are many sophisticated compressible codes available that could be used for

such problems especially in complicated geometries

• For low speed aerodynamic problems at high angle of attack most of the of the

flow consists of a low Mach number flow. However, there are localized regions

containing shocks.

• In many problems thermal effects are important and the energy equation is coupled

to the other equations.

Therefore, one wants to change the transient nature of the system to remove this

disparity of the wave speeds. Based on an analogy with conjugate gradient methods



suchmethodswerecalled [54] preconditionedmethodssincethe object is to reducethe
condition number of the matrix. Another approach,in one dimension,is to diagonalize
the matrix of the inviscid term. Onecan then usea different time stepfor eachequation,
or wave. Upon returning to the original variablesone finds that this is equivalent to
multiplying the time derivatives by a matrix. Hence, this sameapproach is named
characteristic time stepping in [55]. In multidimensions one can no longer completely
decouplethe wavesby diagonalizingboth the entropy and the shearwavesand so the
characteristic time stepping is only an approximation.

Thus, for both the incompressibleand compressibleequationswe will considersys-
tems of the form

(1) wt + f:_ + gu = O, ,

This system is written in conservation though for some applications this is not necessary.

Our analysis will be based on the linearized equations so that the conservation form does

not appear in the analysis though it does appear in the numerical system. This sytem

is now replaced by

(2)
or in linearized form

p-i wt + f_ + gv = 0,

(3) p-lwt + Awx + Bwu = O,

In order for this system to be equivalent to the original system in the steady state

we demand that P have an inverse. This only need be true in the flow regime under

consideration. We shall see later that frequently P is singular at stagnation points and

also along the sonic line. Thus, we will only consider strictly subsonic flow without a

stagnation point or else strictly supersonic flow. For transonic flow it is necessary to

smooth out the singularity in a neighborhg0d of the sonic line. We also assume that the

Jacobian matrices A = a_/_ and B = _ are simultaneously symmetrizable. In terms of
Ow Ow

the 'symmetrizing' variables we also demand that P be positive definite. We shall show

later in detail that it does not matter which set of dependent variables are used to develop

the preconditioner. One can transform between any two sets. of variables. The choice

of variables is dictated only by convenience in constructing the preconditioner. Popular

choices are two out of density, pressure, enthalpy, entropy or temperature in addition to

the velocity components. Thus, when we are finished we will analyze a system which is

similar to (3) where the matrices A and B are symmetric and P is both symmetric and

positive definite. Such systems are known as symmetric hyperbolic systems. One can

then multiply this system by w and integrate by parts to get estimates for the integral of

w_, i.e. energy estimates. These estimates can then be used to show that the system is

well posed. We stress that if P is not positive then we change the physics of the problem.

For example, if P = -I then we have reversed the time direction and must therefore

change all the bounday conditions. Hence, to be sure that the system is well posed witli

the original type of boundary conditions we shall only consider the symmetric hyperbolic

system. For more general systems one must use a more complicated analysis to show

well-posedness for the initial-boundary value problem ([30], [63]).



With these assumptions we see that the steady state solutions of the two systems

are the same. Assuming the steady state has a unique solution it does not matter which

system we march to a steady state. We shall later see that for the finite difference

approxhnations the steady state solutions are not the necessarily same and usually the

preconditioned system leads to a better behaved steady state.

We can also look at (3) from a different viewpoint. We assume that the matrices A

and B are symmetric and P is positive definite. It is well known that for the Euler equa-

tions that the matrices A and B cannot be simultaneously diagonalized by a similarity

transformation. However, the matrix P has changed the equation. Since P is positive

definite there exists a matrix Q so that P = QQ*. We then introduce a new variable

w = Qv. For constant coefficients A, B (3) is replaced by

(4) vt + Q*AQvx + Q*BQvy = o,

Thus, the diagonalization question changes and we wish to know if A and B can

be simultaneously diagonalized by a congruence transformation (Q*AQ) . A sufficient

condition for this to be true is that there exist numbers wl,w2 so that wlA + w2B is

positive definite. It is shown in [53] that this true for supersonic flow. Hence, we have

shown that for supersonic flow one can introduce a preconditioning matrix so that the

equations (constant coefficients) are diagonalized. However, this is not true for subsonic

flow. We shall later show that using differential operators one can diagonalize the system
even for subsonic flow.

2 Incompressible equations

We first consider the incompressible inviscid equations in primitive variables.

u_ + vy = 0

(5) u_ + uu_: + vuy + p_ = 0

vt + uvx + v% + p_ = 0

We consider generalizations of Chorin's pseudo-compressibility method [14].

preconditioning suggested in [54] we have

Using the

(6)

or in conservation form

1

_-_p_+u_+vy = 0
o(u

fl_ ut + uux + vu_, + px = 0

av

--_vt + uv_ + vv v + py = 0

1
--z-4Pt+ u_ + vy = 0
p-



(7)
(a + 1)u

u, + (u_+ ;)x + (uG = 0

(4 + 1)Vv,+ (_.)x + (v_+ ;)_ = 0
p

Hence, (7) reduces to the original pseudo-compressibility method when a = 0. The

conservative form reduces to the basic method when a = -1 . We can also write (7) in

matrix form using

(8) (,,,.oo) (,.oo)PT-I= au/fl 2 1 0 PT= --au 1 0

av//3 2 0 1 --av 0 1

i.e.

(1,,.oo)(.)(OLO)(.)(OOl)(.)(9) aulfl _ 1 0 u + 1 u 0 u + 0 v 0 u =0

av/fl 2 0 1 v t 0 0 u v 1 0 v v
x y

Multiplying by P we rewrite this as

(10) wt + PAw_ + PBw u = 0

We also define

=

(11) D=wlA+w2B -1 <wl,w2 <_ 1

where wl,w2 are the Fourier transform variables in the × and y directions respectively.

The speeds of the waves are now governed by the roots of det(AI - PAw1 - PBw2) = 0

or equivalently det(AP -1 - Awl - Bw2) = 0. Let

(12)

Then the eigenvalues of D are

q = UCOl+ vw2

(13) do = q

d+ = 1/2 [(1 - a)q 4- k/(1 - a)2q 2 + 4/32]

Note that in the special case a = 1 we have

(14) d+ = +fl

and so the 'acoustic' speed is isotropic.

We see that the spatial derivatives involve symmetric matrices, i.e. D is a symmetric

matrix. Thus, while the original system was symmetric hyperbolic the preconditioned

system is no longer symmetric. In ([,54]) it is shown that as long as

(15) f12 > ot(u 2 + v 2)

4



then the system is syInmetrizable. Hence, for any nonnegative a the system is always

symmetrizable. Recall that a = 0 for the original pseudo-compressibility equations in

primitive variables (7) while a = -1 for the original pseudo-compressibility method in

conservative variables (8) For a = 1 we need

(16) /3s > (uS + v2)

On the other hand the eigenvalues are most equalized if fls = (u 2 + v2). Hence, we wish

to choose/3 s slightly larger than u s + v s. However, numerous calculations verify that in

general a constant/3 is the best for the convergence rate. The reasons for this are not

clear.

However, we wish to stress that/3 has the dimensions of a speed. Therefore,/3 can not

be a universal constant. There are papers that claim that/3 = 1 or/3 = 2.5 are optimal.

Such claims can not be true in general. It is simple to see that if one nondimensionalizes

the equation then/3 gets divided by a reference velocity. Hence, the optimal 'constant'/3

depends on the dimensionalization of the problem and in particular depends on the inflow

conditions. In most calculations the inflow mass is fixed at one or else p+ (uS+ v2)/2 = 1.

Such conditions will give an optimal/3 close to one. However, if one chose the incoming

mass as ten then the optimal/3 would be closer to ten.

Van Leer, Lee and Roe considered the compressible equations. They wanted a sym-

metric preconditioner so that there would be no question of well posedness. We now

translate their results to the incompressible equations (1). They assume that the flow is

aligned with the x direction and so v=0 and [u[ s is the total speed of the fluid. Their

preconditioner in this coordinate system is

s 0 )(17) P= -_u 1+_ 0
0 0 r

Choosing -r = I preserves the speed of the shear wave while choosing /3 = 1 gives an

isotropic 'acoustic' wave (20) the magnitude of this acoustic wave is determined. In

order to compare this formula with the previous formulas we wish to reformulate this

preconditioner for the case where the flow is not aligned in the x direction. We denote

the matrices in the streamwise and perpendicular directions as All and A± respectively.

We next define the rotation matrices as

(I0 0)(,0 0)U= 0 cosO sinO U-l= 0 cosO -sinO

0 -sinO cosO 0 sinO cosO

To get the streamwise direction we shall choose

u

cosO - + vs

D
sinO -

v/u 2 + vs

One can then verify that given the original matrices A, B.

5



(18) All = U(AcosO + BsinO)U -1

Az = U(-AsinO + BcosO)U -1

Given numbers ('O1, _32 for Att, Ax we define

note

Also define

Then it is easy to verify that

_1 : &l COSO - &2sinO

_2 = &asinO + &2cosO

^ ^

+ = +

P = U-lPU.

P(All_l + Ax&2)= U [P(Acol + Boo2)]U -I

Therefore, the appropriate preconditioner is P given by

U 2 + y2 --U --u_Vv2 )

_2 U_

(19) Pv = -u 1 + _,2+,,2
uv

Note that P,A,B are symmetric matrices. This does not imply that PA or PB are

symmetric. However, this is still a symmetric hyperbolic system and so the standard

energy estimates prove the well posedness of the system. We also see that the eigen-

values do not change if we use the streamwise direction or the full 2D form. Thus, the

eigenvalues of the preconditioned system are

(20) do = _ + v2_ol = uc01+ vco2= q

d+ = +v@ + v_

d:t are the same as in (13) if we choose a = 1 and 3 = v/Tff + v 2.

As noted before, with the preconditioner of Van Leer et. al. one cannot have the

usual shear speed together with an isotropic 'acoustic' wave speed with an arbitrary mag-

nitude. With therefore, consider a modification of their preconditioner.

coordinates it is given by

In streamwise ..................

(21)

with

3 2 -5 O)
P= a o

0 0 1

5 = 32 + 3v/3_ - us 25, &- , u¢0
U U



Choosing /32 = u 2 gives the original preconditioner of Van Leer et. al. for incom-

pressible flow. In general nonaligned coordinates this becomes

(22) PVM --au 1 + _
_- u2 +v 2 u 2 +v 2

u 2 +v 5_ "['- u2 +v 2

/35+/3v//3__ (u2+ v2) u_+ v_# o
0( =

U 2 + U 2

Now, we have the condition/32 > u2 + v 2 (cf. 16). The speeds are now given by

do = q

de = +/3

This can now be compared with (14) for PT.

Numerous computer runs have shown that PT works best with fl constant and not

depending on the speed. To date there have been no computer calculations for the

incompressible equations with Pv.

These examples show that the preconditioning is not unique. If fact, it is straightfor-

ward to see that the transpose of PT is also a preconditioner with the same eigenvalues

for the preconditioned system. In general, these various systems will have similar eigen-

values but different eigenvectors for the preconditioned system. Numerous calculations

show that the system given by PT is more robust and converges faster than that with

the transpose preconditioner. This shows that it is not sufficient to consider just the

eigenvalues but somehow the eigenvectors are also of importance.

3 Compressible equations

The time dependent Enler equations can be written as

1 1
pt + (upx + vpy) + ux + vy = 0

pc 2

(23) ut + uu_: + vuy + p--5-_= 0
P

vt + uvx + vvu + p-g-y = 0
P

St + uSx + vSy = 0

The first general attempt to replace this by other systems of equations with the same

steady state was by Viviand ([59],[27]). He considered both incompressible and com-

pressible isoenthalpic flow. We will consider preconditionings that are a generalization

of (9)

ooo/(/(,.1 .OlO)p---_ 1 0 0 u + p u 0 0 u + 0 v 0 0
! 0 v 0_ 0 1 0 v 0 0 u 0 v p

3-_ 0 0 0 v0 0 0 1 S' t 0 0 0 u S'

p)U

V

S

=0



Note that if weuse@ insteadof dp the matrices become symmetric. We next present
pc

the eigenvalues of P D (defined in (11). Let

(24)

then

(25)

q = UO) 1 -]- '0012

d±= 1/2[(1-

d o = q

+ Z2/c )q+ - + Z /c )M + 4(1-
l

If we consider the special case _ = 1 +/32/c 2 we find that the 'acoustic' eigenvalue is

given by

(26) = v/(1-

Hence, these eigenvalues are isotropic in the limit of M going to zero. However,

this eigenvalue vanishes at the sonic line and so the matrix is singular. In general, if

we demand that the acoustic eigenvalues be isotropic then we have a singularity at the

sonic line where the eigenvalues cannot be isotropic. The two ways out of this difficulty

are either to smooth the formulas near the singular line or else to give up on isotropy.

For example in [34] c_ is chosen as zero. This results in a ratio of about 2.6 between the

fastest and slowest wave speeds at M = 0. However, now the formulas are regular at

the sonic line. This difficulty is not a property of the preconditioning just presented but

applies equally to all preconditioners e.g. that of Van Leer et. al. which will now be

presented.

The Van Leer, Lee, Roe preconditioning [55] for general non-aligned flow ill (_ du, dv, d,5')
pc '

variables is

(27) Pv =

-_ M 5_v l c

(-b+ 1) ": " JT %/,I] T U 2 _t 2

--_v/c (_- -t- 1),,:+., (_ -t- 1)_-rg-p- -I- "r_---g--_ 0
0 0 0 1

x/'i-M 2, M< 1,/7 = _-1, M>_ 1;

v/I-M s, M< 1,r = x/'l-M -2, M>I.

At the sonic line /7 = 0 and r = 0 and the matrix becomes singular. In both

these examples the preconditioner was constructed based on using (p,u,v, S) as the

dependent variables. The reason for this choice is that the matrices are essentially

symmetric which this choice. However, if another choice of variables is more appropriate :

that introduces no difficulties. Thus, for example [13] recommend the use of (p, u, v, T)

variables for the Navier-Stokes equations. Given two sets of dependent variables w and

W let W_ be the Jacobian matrix ow Then, we have dW = W,_dw. So we can go5J-_•
between any sets of primitive variables or between primitive variables and conservation

variables. In particular since the equations are solved in conservation variables we have

several ways of going from the primitive variable preconditioner to a conservation variable



preconditioner. Thus, the choiceof variablesusedin constructing tile preconditioner is
dictated by mathelnatical or physical reasoningand then the preconditioner can be
transformed to any other set of variables.

• We can construct the preconditioner matrix for the conservationvariables. If W
are the conservativevariablesand w are the primitive variablesthe Pco,_s_,_ti,,e=

-1
(W_,) Pp,.,ml,ive(Ww).

Let W denote the conservative variables (p, m, n, E) t, with m = pu, n = pv , let w

denote the primitive variables (p, u, v, S) t and let t_ denote (p, u, v, T)q Then

o

C2

OW _ p 0 _m___o

Ow .y_ 0 p - _n
_M2 m _ _2_

2(-y-1) -ys

_w

OW
(3'-l)(u2+v2)--2Upvp --(_ 0---" 1)u -(7 I_0;-1)v 7-00 1 )

P P P P P

Odv

Ow 1 O0 O)

0 1 0 0

0 0 1 0

(_-_)To0 _3'P

1 0 0 0

Ow 0 1 0 0

_= 0 0 1 0

-(_-_)s 0 0 _
p T

We calculate the residual dW in conservative variables. We then transform dW to

dw as before. Next we multiply by P and finally transform back to conservative

variables dW and update the solution. This is algebraically equivalent to the first

option but requires three matrix multiplies instead of one. However, it offers more

flexibility.

Similar to the previous suggestion we calculate the residual dW and transform

to conservative variables dw and the multiply by P. At this stage we update the

primitive variables w. We then use the nonlinear relations to construct W from

w. This approach has advantages if the boundary conditions are given in terms

of the primitive variables (p or T) and so they can be specified exactly and not

approximately.



Thesemethodsare all equivalentfor linear systemsand the differencebetweenthem
is mainly one of convenience.

Basedon conservativevariables Choi and Merkle [35] suggesttwo other precondi-
tioners. Tile first is

(28) PCM1 =
1 0 0 0 )

0 1 0 0

0 0 1 0

-_-(M -2- 1) u(M -2- 1) v(M -2- 1) M -2

Tiffs matrix is closely related to the first preconditioner PT with a = 0 after switching

between (p, u, v, S) variables and conservative variables (see [54] for more details). We

get a similar looking preconditioner by replacing Et in. the energy equation by _ and
then

p

1 0 0 0 )

0 1 0 0

0 0 1 0

-u -v -%
2 "/--1

For the Navier-Stokes equations they [13] suggest a different preconditioner given by

(29) PCM2 =
i 0 0 0 )

tiM 2

p 0 0

_-2,=... 0 p 0

-6 pu pvpfl M 2

Choosing 6 = 0 or 1 made very little difference in their calculations.. For inviscid flows

/3 = c2. As pointed out before, for both these preconditioners the ratio of eigenvalues of

the preconditioned system is not one in the limit of M = 0 but on the other hand the

systems are not singular at the sonic line.

We thus again see that the preconditioner is not unique for a given set of variables.

Instead many matrices are capable of reducing the spread of the wave speeds at low

Mach numbers. The main difference for inviscid flow between all these preconditioners

are the eigenvectors that result from the preconditioning. There has been little work

comparing the properties and efficiencies of these preconditioners.

3.1 Supersonic Flow

We previously mentioned that for supersonic flow one can diagonalize both martices

A and B simultaneously with a congruence transform (two dimensions only). We now

explicitly give this transformation. We consider the symmetrizing variables (0_, u, v, S),
then

(uc00)(v0c0/cuO0 B= OvO0
A= OOuO cOvO

O00u O00v

10



Let q2= u z+v 2. We assumeu > 0, v > 0. Since the flow is supersonic q>_ c. The

last row and column decouple and so we consider only a 3x3 submatrix. Define,

Ul= & v2= '2V q 2
v v u 1 i

;_q -;7_q _ _ --_ o

and

r , oo)_ 0
0 _
0 0

and let Q = U1TU= • Then

c11

Yr
Q AQ= 0 u---

0

0 0

v_-c_ 0
0 u

Q*BQ = v - - ,,c o
C2

0 v

We then have the following trivial theorem:

Theorem 1 ff we replace the matrices A and B by the same congruent transformation

then this is equivalent to preconditioning with a non-negative matrix. If the congruent

transformation is nonsingular then the preconditioning matrix is positive definite.

The proof follows since QQ*A = Q(Q*AQ)Q -_ and similarly for B. Thus, the pre-

conditioner P is given by P = QQ*. The converse follows by letting Q be the square

root of P which exists whenever P is positive definite.

4 Difference Equations

Until now the entire analysis has been based on the partial differential equation. For long

waves it is reasonable to replace the numerical approximation by the original differential

equation. Since we are mainly interested in wave speeds these are governed by the low

frequencies. It is also possible to extend this analysis to the finite difference approxima-

tion. We now make some remarks on important points for any numerical approximation

of this system.

For an upwind difference scheme based on a Riemann solver this Riemann solver

should be for the preconditioned system and not the original scheme. In [17] plots

are shown to illustrate the greatly improved accuracy for low Mach Immber flows

when the Riemann solver is based on the preconditioning

For central difference schemes there is a need to add an artificial viscosity. Accuracy

is improved for low Mach immber flows if the preconditioner is applied only to the

physical convective and viscous terms but not to the artificial viscosity. Volpe [61]

shows that the accuracy of the original system deteriorates as the Mach number is

11
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reduced. The author has had a similar experience in three dimensional flows around

a fuselage configuration. The use of a matrix artificial dissipation ([51]) should be

based on the preconditioned equations as in the upwind difference scheme. On the

other hand Merkle (private communication) has indicated that he has no difficulties

with accuracy in the very low Mach regime. He can take the solution obtained with

a preconditioner and use that as initial data for a nonpreconditioned code which

then simply converges in one time step with the same small residual. In this

case both the original system and the preconditioned system give the same results

even on the difference level. Upwind schemes tend to have more difficulties with

accuracy for low Mach flows [17].

Hence, both for upwind and central difference schemes the Riemann solver or

artificial viscosity should be based on p-i ipA[ a_nd not IAI. i.e. in one dimension

solve wt + Pfx = (IPAlwx)x. For a scalar artificial viscosity [PA I is replaced

by the spectral radius of P A or equivalently the time step associated with the

preconditioned matrix. This is equivalent to not multiplying the artificial viscosity

by P.

Similarly, when using characteristics in the boundary conditions these should be

based on the characteristics of the modified system and not the physical system.

When using multigrid it is better to transfer the residuals based on the precondi-

tioned system to the next grid since these residuals are more balanced than the

physical residuals.

Preconditioning is even more important when using multigrid than with an explicit

scheme. With the original system the disparity of the eigenvalues greatly affects the

smoothing rates of the slow components and so slows down the multigrid method,

[56].

In addition to convergence difficulties there are accuracy difficulies at low Mach

numbers [61]. Some of these can be alleviated by preconditioning the dissipation

terms as indicated above. For very small Mach numbers there is also a difficulty

with roundoff errors as ---2-- _ cx_. Several people have suggested subtractingu2 + v 2

out a constant pressure from the dynamic pressure. A lnore detailed analysis [22]

and e is a representativesuggests replacing the pressure p by/_ where p = _2
Mach number.

We conclude from the above remarks that the steady state solution of the precon-

ditioned system may be different from that of the physical system. Thus, on the

finite difference level the preconditioning can improve the accuracy as well as the

convergence rate.

5 Differential Preconditioners

In the previous sections the preconditioner P was a matrix. For the nonlinear fluid

dynamic equations the elements of P involved the dependent variables. There are several

limitations with this approach.

12



We first considera scalarequation

(30) wt + aw_: + bwy = O,

We consider a uniform cartesian mesh with constant Az, Ay. We define the aspect ratio

for this problem as

ar = aspect ratio =
b/Ay"

This can be interpreted as the ratio of time for a wave to traverse a mesh in the x

direction relative to the time in the y direction. We note that the ratio _ is meaninglessAx

since this can be changed by a trivial change of variables.

If this aspect ratio differs greatly from one then the standard schemes will converge

slowly since a time step appropriate for one direction is inappropriate for the other

direction. For a scalar equation, this is an artificial problem since, in practice, the mesh

would be chosen so that the aspect ratio is close to one. However, for a system of

equations there are many waves. If the aspect ratio is close to one for one wave it will

not be close to one for other waves. In the boundary layer for the acoustic wave ar =

+:!/_x ,._ _.}. However, for the shear wave ar ,-, _-_ and away from tile wall but in
H Y

the boundary layer u is much larger than v. Hence, any mesh that is appropriate for

the acoustic wave is not appropriate for the shear and entropy waves and vice versa. In

addition there are viscous effects that we are ignoring, so that in practice the mesh is

constructed based on viscous effects and ignores both the acoustic and entropy waves.

For the scalar equation we are considering algebraic preconditioning cannot help (Li

and Van Leer, private communication). For a system the preconditionings we have

considered can partially rectify the difference of speeds between the various waves but

does not alleviate the aspect ratio difficulty.

The matrix preconditioners we have considered until now have a second difficulty.

For one dimensional flow one can choose the preconditioner as the absolute value of the

matrix A. Then all the resultant waves have identical speeds with only differences in

the direction, positive or negative. However, in two space dimension when the matrices

A and B do not commute it is not possible, in general , to equalize all the speeds.

Equivalently, we cannot diagonalize the system and reduce it to a sequence of scalar

equations even for the frozen coefficient problem.

To alleviate these two problems we shall allow the preconditioner P to contain deriva-

tives. However, as before we still demand that for the symmetric equations that P be

invertible and be positive definite.

For the scalar equation (30) we consider a preconditioner based on residual smoothing

[26]. This is given by

(31) (1 - flx0_)(1 - flvOvv)Res,_w = ReSold

where Res refers to the residual before and after smoothing. This residual smoothing

is usually introduced to improve the time step and smoothing properties of an explicit

scheme as Runge-Kutta or Lax-Wen&off. Here, we analyze the scheme from a different

perspective, that of wave speeds. We assume that the aspect ration for the problem is

very large (i.e. b is large compared to a or Ay is small compared to Ax ). The question

we wish to address is whether fix and flu can be chosen so as to reduce this aspect ratio.
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We first considerresidual smoothing in one spacedimension. In this casethere is
no aspect ratio. Instead we will show how the concept of wave speedsexplains the
phenomenathat oneshouldnot useresidualsmoothingwith a very largetime stepeven
though it canbe stabilized by choosingan appropriately large/3..

(1 - flOx,:)wt + aw_ = 0

We analyze this for a semi-discrete equation with time continuous, the first x deriva-

tive approximated by a central difference and the second space derivative by a three

point central difference. In order to find the phase and group velocities we consider

solutions of the form w = e i(kx-_t). Here k is given and we find w from the dispersion

relation. For the one dimensional residual smoothing we have

asinO/Az
k = asinO, w=

1 + 2/3(1 -cosO)

0 = kAx

To find a stability condition for a Runge-Kutta scheme in time we maximize co and

find that the worst case is cosO = 2--32- We then find that the scheme is stable if
1 +2_ •

1 2

fl > _(r - 1)

at,,_, .Thus, from the viewpoint of stability we can choose any time stepwhere r = Atoriginal

we wish by choosing/3 sufficiently large. Nevertheless, one finds computationally that

convergence to a steady state is slowed down by choosing At, and hence fl, too large.

Optimal values are r -,_ 2. We shall now show from the viewpoint of wave propagation

that it is not good to choose a very large time step.

Residual smoothing adds a term w_t to the original differential equation. Such a

term is a dispersive term i.e. the energy is not reduced but now the speed of a plane wave

is no longer constant but instead depends on the wave number. The main purpose of

this term is to increase the time stability limit. However, as in defining the aspect ratio,

increasing the time step is meaningful only if we normalize the solution in some way,

otherwise we are merely rescaling the time dimension. Hence, the appropriate quantity

is not the time step but rather the time it takes a wave to transverse one cell (assuming

Ax is constant). The phase speed of a plane wave is given by

¢o a

vv k 1 + 4�3sin20�2

Let /3 = I 2a(r - 1) and multiply vv by r to get the distance transversed in time At.
Then

2/"

(32) s v = relative phase distance =
(r 2 + 1)- (r e- 1)cosO

For the long wave lengths cosO .-_ 1 and so s v ,._ r, i.e. the long wave lenths move

2_ < 1. Thusr times further in one time step. If we look at 0= rr/2, wehaves v = __

this frequency moves slower than without residual smoothing. For the highest frequency
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1
on the mesh we have 0 = 7r and sp = 7" We therefore, see that the high frequencied

are actually slowed down by the residual smoothing and so take longer to exit from

the dolnain, furthermore the larger At is chosen the slower these waves go. Even more

important the larger At is chosen the more frequencies that are slowed down even though

the Iowest frequencies travel faster. The breakeven frequency is given by eosO -- 7g-i'r-I

We can also consider the group velocity. For the optimal/3 this is given by

"09m
_ 2(r + 1)co 0- (,,5 1)co 2O

dk [0 .2 + 1)- (r 2- 1)cosO] 2

and

(r 2 + 1)cosO- (r 2- 1)cos20

(33) sg = sp (7"2 + 1)- (r 2- 1)cosO

The situation now is even less favorable than before. Again, the lowest frequencies are

sped up by a factor r. The frequency 0 = r/2 is slowed down by an additional factor of

_-1 and the highest frequency 0 = _r now reverses direction and goes upstreamr2+l

In figures (la-lc) we plot the phase and group relative distances for r=2,5,10. As

demonstrated above we gain a factor of r for the low fequencies but actually lose compared

with r=l for the high frequencies. As r is increased more frequencies get slowed down.

Because we are considering the semi-discrete equation and residual smoothing is purely

dispersive there is no damping of the waves. For a Runge-Kutta scheme one finds that

as r is increased that the damping of high frequencies decreases. Thus, for large r the

high frequencies do not propagate very fast and are not damped either. This explains

one in practice one chooses an r of about two for the greatest increase in the convergence

rate to a steady state.

We next consider the two dimensional equation. To ease the derivations we shall con-

sider the partial differential equation (31) rather than the finite difference approximation.

We rewrite (31) as

(34) ut - fl_u_:t - /3vuuvt +/3_fluuz_uut = au_ + buv

We are interested in the effect of high aspect ratios. So we consider Ay << Ax . By

rescaling we instead consider a uniform mesh but a << b. In particular we shall choose

a=e, b=l .

Consider solutions of the form u = e i(k_+kyv-'t) or equivalently u = e;(£6-_'0 where

/_= (k_, kv) and £= (x,y). Substituting this into (34) we get

_k. + ky

Hence, w(1,0)- ,_Z. and _,(0, 1)- - 1%--y_" If we want these to be equal then we need

/3_ = O(1),/3y = O(}). This is different than what is normally chosen for in residual

smoothing ([50]).

We now consider differential preconditioners for the Euler equations. We shall only

considered the linearized equations with constant coefficients. This will now be a matrix

preconditioner where the elements of the matrix contain partial derivatives. We first
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rewrite (24) in a more relevant differential form. Thus, the Euter equations can be
written as

(35) wt + Lw = 0

with w = (p, u, v, ,9)* . We next define

Q = uOx + roy

Since, all coefficients are assumed constant Q commutes with O_ and 0 v then

(2 pc'23_ pc20y

1

o Q
0 0 0

Let

(37) D = Q2 _ c2(02 + 0_).

We now replace (35) by the preconditioned system

0)0

0

Q

(38) w, + PDLw = 0

with

(39)
Q2 -pdO_Q -pc2OyQ o )

- c u; c20_Oy 0
PD = _ !69 c2c9_¢9y ,_2 2"_2_4 -c% 0

OY 0 0 D

One can then verify that

PDL = QDI, p_l = D-1Q-1L

One can of course replace the D in the lower right corner of PD by the identity

matrix. Then PDL is not the identity matrix but is still a diagonal matrix. We can use

simpler matrices than PD by considering congruent transformations. We consider the

symmetrizing variables c( @ u, v, S), then
pc _

L

Q Cox o)
_o_ O o o
coy 0 Q 0

o o o Q

Let,

(40) PE --
Q -cO_ -cOy o)

0 1 0 0

0 0 1 0

0 0 0 1
Q 0 0 0)

-cO_ 1 O0

PE= -cOy 0 1 0

0 0 0 1
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then

DQ O 0 O)
PELP_= 0 Q 0 0

o o Q o
o o o Q

so we have dlagonalized L by a congruent transformation. But,

PELP_: = p_-I (P_:PEL)PE,

so the congruent transform is similar to a preconditioning with a positive definite matrix

P_:PE- Alternatively, (P_:PE)L is similar to a diagonal matrix.

Q -cO_ -cOy o "_
ire_toE = --cOx 1 + c20_ c20xOv 0 J-cOy c200_0_ 00 1

Note that P_:PE looks similar to PD but is not identical. P_;PE has fewer deriva-

tives along the identical but P_:PEL is only similar to a diagonal matrix while PDL is

diagonal and even a scalar differential operator multiplying the identity matrix. These

transformations are independent of the flow regime as long as the preconditioner is non-

singular.

These preconditioners are connected with the techniques used in distributive Gauss-

Seidel smoothers for multigrid methods ([6],[7]).

It remains to show that P is nonsingular. We have four eigenvalues and corresponding

eigenfunctions. As usual the entropy wave decouples. For this wave P has an eigenvalue

D and an eigenfunction (0,0,0,1) . For the shear wave P has an eigenvalue D and the

eigenvector is (Vl, v2, v3, 0) where

Ov I _ 0

D, Ov2 Ova
t-g-;x+ Oy , =o

The other two 'acoustic' eigenvalues of P are Q2 + cQ_/r_ + O_ and the eigenvectors

satisfy the pseudo-differential equation

[c(0 + ± + Ox oy/ = o

_:v/_: + °_ = ec \-0-;x+ oy/

We therefore have to show that the eigenvalues are all nonzero so that P

gular. The operator D is just the potential operator i.e. for any variable w

is nonsin-
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For subsonic flow this is an elliptic operator and so invertible. For supersonic flow D

is a hyperbolic operator. Similarly, Q is a hyperbolic operator denoting convection along

a streamline. Thus given appropriate boundary conditions this too should be invertible.

At a stagnation point Q is singular and so it is necessary to limit the values of u and in

v in the definition of Q so that they do not become too small in a neighborhood of the

stagnation point. A similar smoothing is needed near the sonic line. These arguments

have been applied to PD but similar arguments work for P_PE.

With residual smoothing and PD or P_PE we have increased the order of the system

and so changed the number of boundary conditions needed for the equation to be well

posed. To avoid this difficulty we do not solve the equation (38). Instead these precon-

ditioners are used as a post processor for the usual Euler or Navier-Stokes equations.

Thus, at each time step we calculate a residual based on one's favorite scheme. This

gives a predicted value of the change in time, AwpT_dict_d. We also update the boundary

conditions for the standard fluid dynamic equations. We then operate on Aw with P

with the boundary condition that Awco,.,-ec,_d = 0 , i.e. we don't change the boundary

values calculated by the predictor. When we reach a steady state for the fluids equations

we are solving PAwcoT,._d = 0 with zero boundary conditions. Since P is invertible

Aw = 0, i.e. we preserve the steady state. Thus, in essence we are imposing the fluid

dynamic boundary conditions between the P operator and the L operator.

6 Alternate Methods, Time Dependent Problems

and Viscous Problems

The justification for preconditioned schemes began with low Mach number flows. For

such flows other techniques exist beside preconditioning the equations. The method of

time inclining has similarities to preconditioning [15] .

The basis of one such method is to use an implicit scheme. However, a two dimen-

sional implicit method is too expensive to be efficient. Thus, one classically uses an

ADI approach. However, it is known that with ADI one cannot choose a very large

time step and converge quickly to the steady state. The splitting errors that occur in

the ADI method couples the waves together and one cannot choose an appropriate time

step for each wave. Instead one attempts to separate those terms in the equations that

contribute to the fast acoustic waves from the slow components. One than can use a

semi-implicit method which is implicit for the fast waves and explicit for the slow waves.

Thus, the stability limit of the scheme is governed by the convective speed rather than

the acoustic speed . The explicit part can be either a leapfrog method ([20], [21]), or

a two step method [22]. This can also be extended to the Navier-Stokes equations [23].

Alternatively, once these components are identified, one can split the equations in several

pieces and solve each one separately as in the classical splitting methods [2] . In this

case one can use an implicit method for the fast waves and an explicit method for the

slow waves and in addition one can split off the viscous terms. These methods work for

both time dependent and steady state problems.

A different alternative is to add terms to the equations which disappear in the steady

state. This has a connection with preconditioned methods when time derivatives are

added to the equations. However, in this approach other terms can be added beside
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time derivatives. One example, is to assumethat the total enthalpy is constant in the
steadystate for the compressibleinviscid equations. One can then add terms to the
equationsthat dependon the deviation of the current enthalpy at eachpoint from this
constant steady state enthalpy [25]. For the incompressibleequationsone canadd tile
divergenceof the velocity field or time derivativesof the divergenceto the momentum
equation [41], [43]. Onecan alsoconsidera moregeneralequationof state that reduces
to the physicaloneat the steadystate [44]. In [27]they analyzethe generalcaseof such
pseudo-unsteadysystems.

An extensionof this techniqueis to modify the differential equation to removethe
acoustic wavesor other 'bad' features. One must then justify that the solutions ob-
tained to these modified equations are close to the original equations for some flow
regime. Typical examplesarethe variousLow Mach numberexpansionsfor the fluid dy-
namic equationsor the geostrophicequationsasan approximation to the shallowwater
equationsin meteorology.

For incompressibleflow popular schemesare the SIMPLE [39] and MAC [18] algo-
rithms and their generalizations.Theseusually require the solutionof a Poissonequation
for tile pressureand then a pressurecorrection is usedto update the momentum equa-
tions. Thesemethodscan thenbegeneralizedto the compressibleequations[24]. Merkle,
Venkateswaranand Buelow [37]comparesuchmethodsto the preconditionedtechniques
discussedin this paper. We againstressthat the differencein theseapproachesis not
whether density or pressureare usedas the dependentvariable as one can transform
betweenthesevariables.Thus, for example,onecan modify the compressiblecontinuity
equation by replacing the time derivative of the density with a time derivative of the
pressure. This is just another exampleof a matrix preconditioning as one can express
the pressurederivative asa combinationof a density derivative togther with momentum
and energyderivatives. As describedabove,it is a programming decisionwhether one
shouldusethis modifiedequation to update the pressureand then transfer to density or
to calculate the the appropriate preconditioning matrix and update the density. For a
linear systemthe two approachesare identical.

For time dependentproblems the first approachjust discussedis useful. However,
the preconditioned methods and the secondapproachof this section destroy the time
accuracyunlessthe coefficientsof the perturbation arechosenas a function of the mesh
sizeand soonly affect terms of the order of the accuracyof the scheme.A morepopular
approach has been to use a two-time scheme. In this approacheach new time level
is consideredas the steady state of some problem. Alternatively, the physical time
derivativesareconsidereda forcing terms. Onenow usesthe preconditionedmethods to
achievethis 'steady state' which in reality is the solution at the next time step. Hence,
there is tile physical time t and an artificial time r and r goesto infinity as an inner
loop within eachtime step. [12], [47], [48]). Thus,

p-10w Ow Of 09
=°

The main difficulty with this approach is its efficiency. It is reasonable to use such

a technique only if each 'steady state' problem can be solved with little effort. One

advantage is that one usually has good initial guess for the solution based on tile solution

at previous time steps. However, it typically takes 10 subiterations for each time step.
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Hence, this approach is ten times more expensive than a straight implicit method. One

can also use an Newton iteration [38] at each time step. nevertheless, a semi-implicit

approach in ([20]-[23])seems attractive.

All the methods discussed thus far have been based on an inviscid analysis. For

the Navier-Stokes equations at high Reynolds number we do not expect any important

changes outside the boundary layer. Inside the boundary layer viscous effects modify

the eigenvalues of the differential operator. We thus wish to equalize the contribution

of three quantities, the acoustic waves, the convective waves and the viscous terms. In

particular the viscous eigenvalues are very stiff and so the eigenvalues of the solution

operator are no longer well conditioned. All the preconditioners presented above depend

on free parameters (fl, a,r, 5) . Optimal values for these parameters were given for

inviscid flow. A simple extension of the above methods to viscous flow would keep the

same form for the preconditioning matrices but allow these parameters to also depend

on the Reynolds or Prandtl number (see for example [10] ,[13] ). Thus, for example one

finds that for the original pseudo-compressibility method that /5' should increase as the

Reynolds number is decreased. In [13] a new preconditioner is introduced Based on a

physical analysis of the Navier-Stokes equation s (see 29). The difficulty is that the time

steps are governed by the acoustic and convective speeds and also a viscous contribution.

A basic problem for the preconditioned Navier-Stokes equations is well-posedness. For

the inviscid equations one can show that with the preconditioner PT that the equations

can be symmetrized if o_,_q satisfy the inequality (15), (see [54] ). The preconditioner

Pv is constructed from the symmetric form. Hence, in both cases we can reduce the

preconditioned equations to a symmetric hyperbolic system and so it is well posed. Once

one adds the viscous terms this analysis is no longer valid. One possibility is to start

with a form that is symmetric for both the inviscid and viscous terms [1]. If one uses

a positive definite preconditioner for these variables then standard energy arguments

shows that the linearized preconditioned system is well-posed.

We now analyze the preconditioner PT a little more carefully for the incompressible

Navier-Stokes equations. We also linearizee and so the coefficients u, v,/3 are considered

as constant. The resultant preconditioned equations are

1

fl2Pt + Ux + Vu = 0

(41) C_Uo
/32 u_ + uou_ + vouy + p_ = #Au

OgY o

j32v_+uov_+vov_+pv = #Av

We next differentiate the second equation with respect to x and the third with respect

to y. We replace the divergence of the velocity from the first equation. Let R = uo(u,:_ +

v,_y) + Vo(U, v + vvv ). Then the pressure p satisfies an acoustic-like equation

(42) _:/pul _-Apt# oL+ Ap + + -fiT(uop_ + vopv)t = -R
@

Thus, we replace the Poisson equation used in the MAC type approach by a gener-

alized wave equation for the pressure. We Fourier transform (42) , i.e. p = e i(k_x+k2v-_ot)

and tkl== + Then,
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(43) 09 2 -- [¢_(U0]¢ 1 -'_ 720]C2) + /#[]¢12] 03 --[]_12/3 2 : 0.

We first consider the case a = 0 (i.e. the original pseudo-compressibility for the

primitive equations). Then

/_tkf_± tkfx/4/3__ _fkfe
(44) w =

2

We now have two regimes to consider

case 1: Ik] small (i.e. [kl _ < 4/32/# _)

Then (44) gives w . As expected # introduces a decay in the acoustic wave . The

speed of the wave (real part of co) is now slowed down for the same/3. We thus should

choose a larger/3 as # increases to compensate for this (see also [13]).

case2: Ikl large (i.e. Ikl_ > 4/32/,_) Now,co= i,lkl 2[1± X/I- 4/3_#21kp].Hence,
w is pure imaginary. Thus, these high frequencies do not propagate and their damping

is reduced by/3 (for the smaller damping mode). Thus, one also wants to increase/3 so

that most of the modes in the domain correspond to small I/¢I .

We next consider non-zero a. Let 7 = a(Uokl + vok2)

.y + i#llcl e ± X/4/321/c[2 + *re - t,21/_14+ 2i_#l/_l 2
(45) co = 2

Taking real and imaginary parts of the square root we see that only 7 2 enters into the

imaginary part of w, i.e. the decay rate. So the sign of a is not important for viscous

"- effects. Thus, it seems that a has no major impact on viscous flows and its advantage

comes from equalizing the flow speeds of the inviscid portion of the flow.

7 Computational Results and Conclusions

Numerous authors have used some of these preconditioners for both incompressible and

compressible flows. A selection of papers is presented in the bibliography. Here we

summarize a few of these calculations. Most of these computations have used central

difference approximations of the spatial derivatives and either a Runge-Kutta explicit

scheme or an A.D.I. implicit scheme in time.

For the original pseudo-compressibility equations a number of authors (e.g. [10],

[45], [11] ) have found that a constant /3 works best. Rizzi and Eriksson [45] suggest

/32 = max(O.3, r(u 2 + v2)) with 1 < r < 5, see also [9] . In [38] they also explore similar

issues with regard to upwind schemes. As before their constant 0.3 must depend on

the normalizations used. Arnone ([3], [4]) has used the original pseudo-compressibility

method to solve inviscid and viscous incompressible flow about cascades. A Runge-

Kutta method is used which is accelerated by a multigrid technique. This method has

been extended by the author to include the preconditioner PT. In these calculations

we find that /3 = constant is more robust than choosing /3 to depend on the speed

of the flow. In most cases using a variable /3 causes the iterations to diverge though
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when they do converge it is faster than tile constant ft. Paul and Carlson [40] have a

shnilar three dimensional code for external flow over wings. This code has also been

extended to include PT. In both these codes the convergence is also very dependent on

tile boundary conditions imposed. For some boundary conditions the code converged for

a range of o_ and then c_ = 1 gave the fastest convergence rates as expected. However,

for other boundary conditions only the original pseudo-compressibility method c_ = 0

would converge. It is suspected that the diMculties are connected with initialization.

Thus, cY = 1 though faster may be less robust . It would therefore be neccessary to start

the calculation with c_ = 0 and only once the asymptotic region is reached to change to

Hsu [19] also solves the incompressible equations using PT. In this case an upwinded

approximation is used and the solution is advanced using an A.D.I. method. They

examine in more detail tile influence of a and ft. Due to their implicit solver the code

convergences in all the cases they tried, mainly flows about a delta wing.. However, they

also find that fl = 1 is faster than the variable ft. They principally investigated ¢_ = -i

but indicate that other cds behaved similarly. There have been no computations, to date,

for the incompressible equations using the Pv preconditioner due to the newness of this

approach.

For the compressible equations at low Mach numbers early calculations were clone

by Briley, McDonald and Shamroth [8] and a later by D. Choi and Merkle [ll], and

also Y.H. Choi and Merkle [34] . These methods have mainly used A.D.I. mettlods

though some results with Runge-Kutta schemes have also been achieved. More recently

([17],[55]) results have been achieved with the Pv preconditioner in conjunction with an

upwind scheme. Godfrey (private communication) indicates that there is not a great

difference between the two preconditioners. The use of the correct Riemann solver was

more important than tile details of the preconditioner.

Much of the most recent work has gone into extending these results to the Navier-

Stokes equations [13] and chemistry ([17], [48], [,58]). A number of authors have also

investigated extensmns to time dependent problems based on a two-time approach ([16],

[48], [62]).

Here we present only one set of results. This is for incompressible flow around a

VKI cascade with a nonperiodic mesh across the wake. The mesh is shown in figure

2a. A Runge-Kutta multistage scheme is used with a multigrid acceleration. The code

is a extension of that of Arnone and Stecco [4]. The flow is turbulent with a Reynolds

number of 500,000 and Baldwin-Lomax type turbulence model is used. In table I we

present the residual of the pressure after 50 steps on the first mesh, 50 steps on the

second mesh and 300 steps on the finest mesh. We thus see that ee = 1 gave the fastest

convergence rates, though the differences were not very large. We were able to run only

the modified Van Leer et. al. preconditioner and even that only with a constant _ and
1

fl with a = _ as opposed to the value of a given in (22). With this value of a the terms

with u '2+ v 2 do not appear.
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method

precondition AV

precondition AV

precondition AV

no precondition AV

no precondition AV

no precondition AV

precon AV eq. (22)

no precon AV eq. (22)

/3
1

1

1

1

1

1

1

1

c_ residual

1 6.63

0 6.07

-1 5.76

1 6.34

0 6.23

-1 5.76

0.5 6.34

6.5 6.22

Table 1: Convergence rate

In figure (2c) we also plot the convergence rate for tile first example in the table.

In conclusion these computations show that one can calculate both inviscid and

viscous flows and even those with chemical reactions over a large range of Mach numbers

going down to M = 10 -s in some cases. There is need for further work on the effect

of the parameters in the preconditioners on the convergence rates. It is not understood

why constant/3 seems to be the best choice. There is also need for further investigation

on the effect of boundary conditions on these preconditioners.
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